Beginner's Python Workshop with Thonny

leoFebey

I
&

Welcome to Python programming! This workshop will teach you the fundamentals of Python using the Thonny
editor. Python is a powerful yet beginner-friendly programming language used for web development, data
analysis, automation, artificial intelligence, and much more.

By the end of this workshop, you'll be able to write simple Python programs, understand basic programming
concepts, and have the foundation to continue learning on your own.

Introduction: Setting Up Your Environment

What is Thonny?

Thonny is a beginner-friendly Python editor specifically designed for learning. Unlike complex development
environments, Thonny keeps things simple while providing everything you need to write and run Python code.

Installing Thonny

Step 1: Download Thonny

1. Go to https://thonny.org/
2. Click the download button for your operating system (Windows, Mac, or Linux)

3. The website automatically detects your system

No. 1/26

af://n2013
af://n2020
af://n2021
af://n2023
https://thonny.org/

Thonny 4 is dedicated to Ukraine fighting the Russian invasion.
™= Please support UKkraine! ==

Thonn = s e L
y " windows * Mac * Linux

Python IDE for beginners
+ Thonny = o X
File Edit View Run Tools Help
DB O 22290 @
factorial.py Variables
def fact(n): Name Value
ifn=2o
return 1 fact <function fact 2
else: N 3
return fact(n-1) * n
n = int(input("Enter a natural numbel
T - - -
print("Its factorial is*, FBCtC) fact
fact
def fact(n):
if n == @ def fact(n):
retur ifn==o:
else: return 1
Fetur else:
Feturn - fact(®1) * n
Shell
> Local variables
Eates 3 nateral numbas: 3 Local variables
Name Value
Name Value
" 3
.

Step 2: Install Thonny

1. Run the downloaded installer

2. Follow the installation wizard

3. Accept the default settings (Thonny will install Python automatically if you don't have it)
[Screenshot: Thonny installation wizard]
Step 3: Launch Thonny

1. Open Thonny from your applications menu or desktop shortcut

2. You should see the Thonny interface

No. 2/ 26

Thonny - <untitled> @ 1:1 - o0 Q|
File Edit View Run Tools Help

LEB®E O @ -

<untitled=> -

1 |

[*]

[E1]

Shell -

Python 3.12.12 (/usr/bin/python3)
22>

[+]

Local Python 3 + /usr/bin/python3 =

Understanding the Thonny Interface

When you open Thonny, you'll see:

Editor Area (top): Where you write your code

Shell/Console (bottom): Where you see results and interact with Python

Toolbar: Contains the Run button (green arrow) and other tools

e Menu Bar: File, Edit, View, Run, Tools, Help

Your First Program

Let's make sure everything works!

1. In the editor area (top), type:
print("Hello, Python!")

2. Click the green Run button (or press F5)

No. 3/26

af://n2049
af://n2060

3. You'll be asked to save the file - save it as hello.py

4. Look at the Shell area - you should see:

Hello, Python!

Thonny - fhome/leofebey/Documents/hello.py @ 1:24
File Edit View Run Tools Help
LB 0 % ¢ =

hello.py -

1 print("Hello, Python!™)|

Ll

Shell

»>»> %Run -c SEDITOR_CONTENT
Hello, Python!

>>>

Local Python 3+

/usr/bin/python3

Congratulations! You've just written and run your first Python program!

1. Course Content

Getting Started with Thonny

To run your code: Press F5 or click the green Run button.
Tips:
e Save your work frequently (Ctrl+S or Cmd+S)

e Thonny will prompt you to save before running

e Use descriptive filenames like calculator.py or shopping list.py

No. 4/ 26

af://n2077
af://n2078

Chapter 1: Your First Python Program

Printing Text

Let's start with displaying text on the screen:

print("Hello, World!")

Run this code. You should see Hello, World! appear in the Shell below.

Try printing your own message:

print("My name is Sam")
print("I am learning Python!")

Complete code for this section:
print("Hello, World!")

print("My name is Sam")
print("I am learning Python!")

Chapter 2: Variables and Numbers

Storing Values

Variables are like labeled boxes that store information:
age = 25

This creates a variable called age and stores the number 25 in it.
name = "Alex"

This stores text (called a "string") in a variable called name .

Basic Math

Python can do calculations:

result = 10 + 5
print(result)

This will display 15.

Try different operations:

No.5/26

af://n2089
af://n2090
af://n2099
af://n2100
af://n2106

addition = 10 + 5
subtraction = 20 - 7
multiplication = 6 * 4
division = 15 / 3

print(addition)
print(subtraction)
print(multiplication)
print(division)

Combining Text and Variables

name = "Jordan"

age = 30

print("My name is " + name)

print("I am " + str(age) + " years old")

Note: We use str() to convert numbers to text so we can combine them.

Complete code for this section:

age = 25

name = "Alex"
result = 10 + 5
print(result)

addition = 10 + 5
subtraction = 20 - 7
multiplication = 6 * 4
division = 15 / 3

print(addition)
print(subtraction)
print(multiplication)
print(division)

name = "Jordan"

age = 30

print("My name is " + name)

print("I am " + str(age) + " years old")

Chapter 3: Getting Input from Users

The input() Function

You can ask users to type something:

name = input("What is your name? ")
print("Hello, " + name + "!'")

No. 6 /26

af://n2112
af://n2118
af://n2119

When you run this, Python will wait for you to type something and press Enter.

Working with Number Input

age_text = input("How old are you? ")

age = int(age_text)

next_year = age + 1

print("Next year you will be " + str(next_year))

We use int() to convert text inputinto a number we can do math with.

Complete code for this section:

name = input("wWhat is your name? ")
print("Hello, " + name + "I")

age_text = input("How old are you? ")
age = int(age_text)

next_year = age + 1
print("Next year you will be " + str(next_year))

Chapter 4: Making Decisions with if Statements

Basic if Statement

Programs can make decisions:

temperature = 25

if temperature > 20:
print("It's warm outside!")

Notice the colon : atthe end and the indentation (spaces) before print . This is very important in Python!

if-else Statements
age = 16
if age >= 18:
print("You are an adult")

else:
print("You are a minor")

No. 7/ 26

af://n2123
af://n2129
af://n2130
af://n2134

if-elif-else for Multiple Conditions

score = 75

if score >= 90:
print("Grade: A")
elif score >= 80:
print("Grade: B")
elif score >= 70:
print("Grade: C")
else:
print("Grade: F")

Complete code for this section:

temperature = 25

if temperature > 20:
print("It's warm outside!")

age = 16

if age >= 18:

print("You are an adult")
else:

print("You are a minor")

score = 75

if score >= 90:
print("Grade: A")
elif score >= 80:
print("Grade: B")
elif score >= 70:
print("Grade: C")
else:
print("Grade: F")

Chapter 5: Repeating Actions with Loops
The while Loop

Repeats actions while a condition is true:

No. 8 /26

af://n2136
af://n2141
af://n2142

count = 1
while count <= 5:
print("Count is: " + str(count))

count = count + 1

print("Loop finished!")

This prints numbers 1 through 5.
The for Loop

Used to repeat a specific number of times:

for number in range(5):
print("Number: " + str(number))

This prints 0, 1, 2, 3, 4 (5 numbers starting from 0).

To start from 1:

for number in range(1, 6):
print("Number: " + str(number))

Complete code for this section:

count = 1

while count <= 5:
print("Count is: " + str(count))
count = count + 1

print("Loop finished!")

for number in range(5):
print("Number: " + str(number))

for number in range(1, 6):
print("Number: " + str(number))

Chapter 6: Lists - Storing Multiple Values

Creating Lists

Lists store multiple items in one variable:

fruits = ["apple", "banana", "orange"]
print(fruits)

No.9/26

af://n2146
af://n2155
af://n2156

Accessing List Items

fruits = ["apple", "banana", "orange"]
print(fruits[@]) # First item: apple

print(fruits[1]) # Second item: banana
print(fruits[2]) # Third item: orange

Python counts from 0!

Adding to Lists

fruits = ["apple", "banana"]
fruits.append("orange")
print(fruits)

Looping Through Lists

fruits = ["apple", "banana", "orange"]

for fruit in fruits:
print("I like " + fruit)

Complete code for this section:

fruits = ["apple", "banana", "orange"]
print(fruits)

print(fruits[0])
print(fruits[1])
print(fruits[2])

fruits = ["apple", "banana"]
fruits.append("orange")
print(fruits)

fruits = ["apple", "banana", "orange"]

for fruit in fruits:
print("I like " + fruit)

Chapter 7: Functions - Reusable Code

Creating Simple Functions

Functions are blocks of code you can reuse:

No. 10/ 26

af://n2159
af://n2162
af://n2164
af://n2169
af://n2170

def greet():
print("Hello!")
print("welcome to Python!")

greet()
greet()

This prints the greeting twice.

Functions with Parameters

def greet_person(name):
print("Hello, " + name + "I")

greet_person("Alice")
greet_person("Bob")

Functions that Return Values

def add_numbers(a, b):
result = a + b
return result

answer = add_numbers(5, 3)
print("The sum is: " + str(answer))

Complete code for this section:

def greet():
print("Hello!")
print("welcome to Python!")

greet()
greet()

def greet_person(name):
print("Hello, " + name + "I")

greet_person("Alice")
greet_person("Bob")

def add_numbers(a, b):
result = a + b
return result

answer = add_numbers(5, 3)
print("The sum is: " + str(answer))

No. 11/ 26

af://n2174
af://n2176
af://n2181

2. Demos

Demo 1: Installing and Using External Packages from PyPI

Python has thousands of packages available on PyPI (Python Package Index) that you can install to add extra
features. Let's learn how to install a package and use it. On Windows and MacOS this is quite straightforward,
however on Linux it is more complex and you might need assistance.

Installing a Package
We'll install the emoji package, which lets us easily work with emojis in our code.

Step 1: Open the Package Manager

1. In Thonny, click Tools in the menu bar

2. Select Manage packages...

areet()
Thonny - <untitled> @ 2:14
File Edit View Run Tools Help
LEE O% @ =):
<untitled> * - LR
Manage packages for fusr/bin/python3 Q
|| |‘ Search on PyPI ‘

<INSTALL> < Install from PyPI
adafruit-board-toolkit If you don't know where to get the package from, then most likely you'll want to search the
astroid Python Package Index. Start by entering the name of the package in the search box above and
asttokens pressing ENTER.
autocommand
backports.tarfile Install from requirements file
berypt ’ Click here to locate requirements.txt file and install the packages specified in it.
pitarray | Install from local file
cflﬁs ring Click here to locate and install the package file (usually with .whl, .tar.gz or .zip extension). "
cryptography Upgrade or uninstall
cython Start by selecting the package from the left.
dbus-next
dill . Target
docutils This dialog lists all available packages, but allows upgrading and uninstalling only packages from
ecdsa [var/data/python/lib/python3.12/site-packages. New packages will be also installed into this
esptool directory. Other locations must be managed by alternative means.
flit-core |..
importlib-metadata
inflect
isort G
jaraco.collections
jaraco.context 5 8

T =

T
Local Python 3 * fusr/bin/python3 = *

Step 2: Search and Install

1. In the search box, type: emoji
2. Click Find package from PyPI
3. Click the Install button

4. Wait for installation to complete

No. 12/ 26

af://n2181
af://n2182
af://n2184

Thonny - <untitled> @ 2:14

File Edit View Run Tools Help

LE®E O

| | <untitled> * -

@-

AL UL R L LR

LL " python Pack
pressing ENT

Install from
Click here to

Install from
Click here to

Manage packages for fusr/bin/python3

o]

emaoji

]
Search on PyPI ‘

<INSTALL>
adafruit-board-toolkit
astroid

asttokens
autocommand
backports.tarfile
berypt

bitarray

bitstring

cffi

cryptography
cython
dbus-next

dill

docutils

ecdsa

esptool

flit-core
importlib-metadata
inflect

isort
jaraco.collections
jaraco.context

4

emoji

Latest stable version: 2.15.0
Summary: Emoji for Python

PyPI page: https://pypi.org/project/emoji/
Requires:

Install H ‘

Tt ==

Close

T

T
Local Python 3 = /usr/bin/python3 = ynager shov

T

Step 3: Close the Package Manager

Using the Installed Package

Now let's use the emoji package in our code:

import emoji

Print text with emojis

print(emoji.emojize("Hello! :snake: Welcome to Python! :rocket:"))
print(emoji.emojize("Python is fun! :fire: :star: :thumbs_up:"))

Get user input and add emojis
name = input("What's your name? ")

print(emoji.emojize("Nice to meet you, " + name + "! :waving_hand:"))

[Screenshot: Code running with emoji output displayed]

What's happening:

e import emoji loads the emoji package we installed

e emoji.emojize() converts textlike :snake: into actual emoji symbols

e You can find emoji codes at: https://carpedm?20.github.io/emoji/

Try modifying:

e Use different emoji codes

No. 13/ 26

af://n2205
https://carpedm20.github.io/emoji/

e (Create a mood tracker that prints different emojis based on user input

e Make a fun greeting card with multiple emojis

Other Useful Packages from PyPI

Once you're comfortable, try exploring:

® requests - For downloading data from websites
e pillow - For working with images
e matplotlib - For creating graphs and charts

e pygame - For making simple games

Demo 2: FractPy

We will use a basic fractal art generator package to generate fractals with code!

Install the package

Using the same steps as in Demo 1, install the fractpy package.

Copy the code

The code is available on my website: https://leofebeytech.com.au/services/workshops/

Then click "Beginner Python Workshop"

from fractpy.models import NewtonFractal

model = NewtonFractal("x**10 - 4x**3 + x**2 - 6")

p = model.plot(-2, 2, -2, 2, (1000, 1000))

p.savefig('fractal.jpg', format='jpeg', dpi=150, bbox_inches='tight')
p.show()

No. 14/ 26

af://n2225
af://n2237
af://n2239
af://n2241
https://leofebeytech.com.au/services/workshops/

Click Run to see the preview

r

Figure 1 - o0

Newton Fractal for fix) =x1° - 4x> + x? -6

| -—m (x,y) = (~0.24, 0.97)
- $Q= B [6.00]

Try modifying
e Theinput-eg x**8 - 3x**3 + x**2 - 4

e Use azoom plotinstead p = model.zoom_plot()

Demo 3: OpenCV Face Detection

Python can be used to do some very technically impressive things, like any other programming language.
OpenCV is a computer vision library which can be used to detect things in images, such as faces, limbs, objects.
It uses a variety of algorithms and methods in the background, in many cases very efficiently such that it can
run on lower-end devices.

Install the package

As before, install the opencv-python package. It might take a minute or so to download and install.

No. 15/ 26

af://n2243
af://n2245
af://n2252
af://n2422

Copy and past the code

This is a lot more code than before, but you can find it on the website as above, to then copy and past into
Thonny.

import cv2
import sys

def main():
Load the pre-trained Haar Cascade classifier for face detection

face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades +
'haarcascade_frontalface_default.xml')

Check if the cascade loaded successfully

if face_cascade.empty():
print("Error: Could not load face cascade classifier")
sys.exit(1)

Open the default camera (0)
cap = cv2.VideoCapture(0)

Check if camera opened successfully

if not cap.isOpened():
print("Error: Could not open camera")
sys.exit(1)

print("Press 'q' to quit")

while True:
Capture frame-by-frame
ret, frame = cap.read()

if not ret:
print("Error: Could not read frame")
break

Convert to grayscale for face detection
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

Detect faces in the frame
faces = face_cascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30)

Draw rectangles around detected faces
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.putText(frame, 'Face', (X, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255,
0), 2)

No. 16 / 26

af://n2426

Display the number of faces detected
cv2.putText(frame, f'Faces: {len(faces)}',

(255, 0, 0), 2)

Display the resulting frame

(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1,

cv2.imshow('Face Detection - Press Q to quit', frame)

Break the loop when 'q' is pressed
if cv2.waitKey(1) & OXFF ord('q'):
break

Release the camera and close windows
cap.release()
cv2.destroyAllwindows()

if __name__ == "__main_ ":
main()

Press run and preview

As you can see, it should detect a face. It will likely be a bit glitchy, and detect many false positives. However it
could still be used in practical applications, such as detecting if a person is in a room, or some kind of

automatic video streaming script when a person is present.

Thonny - /home/leofebey/CurrentPersonalProjects/Thonny/python_fun_stuff/face_detect.py @ 62: 11

File Edit View Run Tools Help

= 0 %% @ =

main.py face_detect.py
1 import cv2 i
2 import sys
3 . Face Detection - Press Q to quit
4 def main():
5 CE00EEAe®™MO
6 face_cascade = cv2.Cascad ju_e o E s alface_defauli
7 2 B N I
8 d . | N |
9 if face_cascade.empty():

10 print("Error: Could n

11 sys.exit(1)

12

13

14 cap = cv2.VideoCapture(0

15

16 i

17 if not cap.isOpened():

18 print("Error: Could

19 sys.exit(1)

20

21 print("Press 'q' to quit'

22 1
[T] ¥
Shell -

(x=220, y=6) ~ R:68 G:62 B:57 =l
22>

Press 'q' to quit

Qt: Session management error: Could not open network socket

No. 17/ 26

Local Python 3 + Jusr/bin/python3

af://n2430

Modify it

The code uses the Haar Cascade classifier model, which in theory you can modify the training data to detect
things other than faces. This is of course very advanced for this workshop.

3. Take Home Exercises

Exercise 1: Personal Greeting Program

Create a program that:

e Asks for the user's name
e Asks for their favorite color

e Prints a personalized message using both pieces of information
Example output:
What is your name? Sarah

What is your favorite color? blue
Hello Sarah! I like blue too!

Exercise 2: Simple Calculator

Create a calculator that:

e Asks the user for two numbers
e Adds them together

e Displays the result

Bonus: Also show subtraction, multiplication, and division.

Exercise 3: Temperature Checker

Create a program that:

e Asks for the current temperature
e |ftemperature is above 25, print "It's hot!"
e |f temperature is between 15 and 25, print "It's pleasant”

e |ftemperature is below 15, print "It's cold!"

Exercise 4: Countdown Timer

Create a program that:

e Asks the user for a number

e Counts down from that number to 1

No. 18/ 26

af://n2420
af://n2255
af://n2256
af://n2268
af://n2279
af://n2291

e Prints "Blast off!" at the end

Example:

Enter a number: 5

R N W b~ O

Blast off!

Exercise 5: Shopping List

Create a program that:

e (Creates an empty list
e Asks the user to enter 3 items to add to their shopping list

e Displays all items in the list

Bonus: Print each item with a number (1. Bread, 2. Milk, etc.)

Exercise 6: Age Calculator Function

Create a function called calculate_age_in_months that:

e Takes age in years as a parameter
e Returns age in months (years x 12)

e Test it with different ages

4. Useful References

Python Basics

Official Python Documentation for Beginners

e Python Tutorial: https://docs.python.org/3/tutorial/

e Python for Beginners: https://www.python.org/about/gettingstarted/

Thonny Resources

e Thonny Homepage: https://thonny.org/

e Thonny User Guide: https://github.com/thonny/thonny/wiki

No. 19/ 26

af://n2303
af://n2314
af://n2324
af://n2325
https://docs.python.org/3/tutorial/
https://www.python.org/about/gettingstarted/
https://thonny.org/
https://github.com/thonny/thonny/wiki

Quick Reference Code Snippets

Printing

print("text")
print(variable_name)

Variables

number_variable = 42
text_variable = "Hello"

User Input

text_input = input("Question? ")
number_input = int(input("Enter a number:

If Statements

if condition:
code here

elif other_condition:
code here

else:
code here

Loops

While loop
while condition:
code here

For loop
for item in range(10):
code here

Loop through list
for item in my_list:
code here

Lists

my_list = [iteml, item2, item3]
my_list.append(new_item)
my_Tlist[0] # First item

ll))

No. 20/ 26

af://n2338
af://n2339
af://n2341
af://n2343
af://n2345
af://n2347
af://n2349

Functions

def function_name(parameter):
code here
return value

Common Operators

Addition

Subtraction
Multiplication

Division

Equal to

Not equal to

Greater than

Less than

Greater than or equal to

|
|
H o H O OH H H OH W

Less than or equal to

Learning Resources

Learning Resources

Interactive Practice

e Python Tutor (visualize code): https://pythontutor.com/

e Codecademy Python Course: https://www.codecademy.com/learn/learn-python-3

e W3Schools Python Tutorial: https://www.w3schools.com/python/

Video Tutorials

e (Corey Schafer's Python Tutorials: https://www.youtube.com/c/Coreyms

e Programming with Mosh (Python for Beginners): https://www.youtube.com/watch?v= uQrJ0TkZIc

Books and Guides

e "Automate the Boring Stuff with Python" (free online): https://automatetheboringstuff.com/

e "Python Crash Course" by Eric Matthes

e Think Python (free online): https://greenteapress.com/wp/think-python-2e/

Getting Help

When you get stuck:
1. Read the error message carefully - Python tells you what's wrong!
2. Check your indentation (spaces at the start of lines)
3. Make sure you spelled everything correctly
4. Use print() to check what your variables contain

5. Search for your error message online

No. 21/ 26

af://n2351
af://n2353
af://n2355
af://n2757
https://pythontutor.com/
https://www.codecademy.com/learn/learn-python-3
https://www.w3schools.com/python/
https://www.youtube.com/c/Coreyms
https://www.youtube.com/watch?v=_uQrJ0TkZlc
https://automatetheboringstuff.com/
https://greenteapress.com/wp/think-python-2e/
af://n2780

6. Ask on Stack Overflow: https://stackoverflow.com/

Python Community

e r/learnpython (Reddit): https://www.reddit.com/r/learnpython/

e Python Discord: https://discord.gg/python

e Python Forum: https://python-forum.io/

Python Project Ideas and Libraries

Once you're comfortable with the basics, explore these exciting areas of Python:

Game Development

Pygame - Create 2D games

e Official Site: https://www.pygame.org/

e Documentation: https://www.pygame.org/docs/

e Tutorial: https://realpython.com/pygame-a-primer/

e Project Ideas: Pong, Snake, Platformers, Puzzle games

e |nstall: pip install pygame (or use Thonny's package manager)
Pygame Zero - Even simpler game development for beginners

e Official Site: https://pygame-zero.readthedocs.io/

e Great for learning game concepts without complex code

e |nstall: pip install pgzero
Arcade - Modern alternative to Pygame

e Official Site: https://api.arcade.academy/

e (lean, modern Python game library

e |Install: pip install arcade

Mobile & Desktop Apps

Kivy - Build mobile apps and touch interfaces

e Official Site: https://kivy.org/

e Documentation: https://kivy.org/doc/stable/
e (Create apps for Android, iOS, Windows, Mac, and Linux
e Great for: Touch interfaces, multi-touch apps, mobile games

e |nstall: pip install kivy
Tkinter - Built-in GUI library (comes with Python)

e Documentation: https://docs.python.org/3/library/tkinter.html

e Tutorial: https://realpython.com/python-gui-tkinter/

No. 22/ 26

https://stackoverflow.com/
af://n2795
https://www.reddit.com/r/learnpython/
https://discord.gg/python
https://python-forum.io/
af://n2804
af://n2806
https://www.pygame.org/
https://www.pygame.org/docs/
https://realpython.com/pygame-a-primer/
https://pygame-zero.readthedocs.io/
https://api.arcade.academy/
af://n2835
https://kivy.org/
https://kivy.org/doc/stable/
https://docs.python.org/3/library/tkinter.html
https://realpython.com/python-gui-tkinter/

e Good for: Desktop applications, simple interfaces

e No installation needed!

PyQt or PySide - Professional desktop applications

e PyQt: https://www.riverbankcomputing.com/software/pyqt/

e PySide: https://wiki.qt.io/Qt for Python

e Used for professional-grade applications
Data Science & Visualization

Pandas - Data analysis and manipulation

e Official Site: https://pandas.pydata.org/

e Perfect for: Working with spreadsheets, CSV files, data analysis

e |nstall: pip install pandas
Matplotlib - Create graphs and charts

e Official Site: https://matplotlib.org/

e Make: Line graphs, bar charts, scatter plots, histograms

e |nstall: pip install matplotlib

Plotly - Interactive graphs and dashboards

e Official Site: https://plotly.com/python/

e Beautiful, interactive visualizations

e |Install: pip install plotly

NumPy - Mathematical computing

e Fast mathematical operations and arrays

e |Install: pip install numpy

Machine Learning & Al

Scikit-learn - Beginner-friendly machine learning

e Official Site: https://scikit-learn.org/

e Documentation: https://scikit-learn.org/stable/user guide.html
e Great for: Classification, regression, clustering

e |Install: pip install scikit-learn
TensorFlow - Deep learning framework

e Official Site: https://www.tensorflow.org/

e Tutorial: https://www.tensorflow.org/tutorials

e Advanced: Neural networks, image recognition, NLP

e |Install: pip install tensorflow

No. 23/ 26

https://www.riverbankcomputing.com/software/pyqt/
https://wiki.qt.io/Qt_for_Python
af://n2866
https://pandas.pydata.org/
https://matplotlib.org/
https://plotly.com/python/
https://numpy.org/
af://n2899
https://scikit-learn.org/
https://scikit-learn.org/stable/user_guide.html
https://www.tensorflow.org/
https://www.tensorflow.org/tutorials

PyTorch - Another popular deep learning framework

e Tutorials: https://pytorch.org/tutorials/

e Popularin research and industry

e |nstall: pip install torch
OpenCV - Computer vision and image processing

e Official Site: https://opencv.org/

e Tutorial: https://docs.opencv.org/4.x/d6/d00/tutorial py root.html

e Projects: Face detection, object tracking, image filters

e |nstall: pip install opencv-python

Web Development

Flask - Lightweight web framework

e Official Site: https://flask.palletsprojects.com/

e Tutorial: https://flask.palletsprojects.com/en/stable/tutorial/

e Great for: Beginners, APIs, small to medium websites

e |nstall: pip install flask
Django - Full-featured web framework

e Official Site: https://www.djangoproject.com/

e Used for: Large websites, content management systems

e |nstall: pip install django
FastAPI - Modern, fast web framework for APIs

e Official Site: https://fastapi.tiangolo.com/

e Great for: Building APIs quickly

e |nstall: pip install fastapi

Web Scraping & Automation
Beautiful Soup - Parse HTML and extract data from websites

e Documentation: https://www.crummy.com/software/BeautifulSoup/bs4/doc/

e Use for: Extracting data from web pages

e |Install: pip install beautifulsoup4
Selenium - Automate web browsers

e Official Site: https://selenium-python.readthedocs.io/

e Use for: Web testing, automating repetitive browser tasks

e |nstall: pip install selenium

No. 24/ 26

https://pytorch.org/
https://pytorch.org/tutorials/
https://opencv.org/
https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html
af://n2940
https://flask.palletsprojects.com/
https://flask.palletsprojects.com/en/stable/tutorial/
https://www.djangoproject.com/
https://docs.djangoproject.com/en/stable/intro/tutorial01/
https://fastapi.tiangolo.com/
af://n2969
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://selenium-python.readthedocs.io/

Requests - Simple HTTP requests

e Documentation: https://requests.readthedocs.io/

e Use for: Downloading web pages, working with APIs

e |Install: pip install requests

File & Document Processing
Pillow (PIL) - Image processing

e Documentation: https://pillow.readthedocs.io/

e Use for: Resize, crop, filter images, create thumbnails

e |nstall: pip install pillow
PyPDF2 - Work with PDF files

e Documentation: https://pypdf2.readthedocs.io/

e Use for: Merge, split, extract text from PDFs

e |Install: pip install pypdf2
openpyxl - Read and write Excel files

e Documentation: https://openpyxl.readthedocs.io/

e Use for: Automating Excel spreadsheet tasks

e |Install: pip install openpyx1

Hardware & Electronics
Raspberry Pi Projects - Physical computing

e Official Site: https://www.raspberrypi.com/documentation/computers/getting-started.html

e Projects: Home automation, robots, sensors

e GPIO Library: https://gpiozero.readthedocs.io/

Arduino with Python - Control Arduino boards

e PySerial: https://pyserial.readthedocs.io/

e Firmata: https://github.com/tino/pyFirmata

e Projects: Robots, sensors, LED control

Fun & Creative Projects

Turtle Graphics - Built-in drawing library

e Documentation: https://docs.python.org/3/library/turtle.html

e Great for: Learning programming through art

e No installation needed!
PyGame Music/Audio - Sound and music

e (Create music players, sound effects, audio tools

No. 25/ 26

https://requests.readthedocs.io/
af://n2994
https://pillow.readthedocs.io/
https://pypdf2.readthedocs.io/
https://openpyxl.readthedocs.io/
af://n3019
https://www.raspberrypi.com/documentation/computers/getting-started.html
https://gpiozero.readthedocs.io/
https://pyserial.readthedocs.io/
https://github.com/tino/pyFirmata
af://n3036
https://docs.python.org/3/library/turtle.html

Discord Bots - Create your own Discord bot

e discord.py: https://discordpy.readthedocs.io/

e |nstall: pip install discord.py

Telegram Bots - Automate Telegram

e python-telegram-bot: https://python-telegram-bot.org/

e |Install: pip install python-telegram-bot

Project Path Suggestions

If you're interested in...

Games: Start with Pygame Zero — Pygame - Arcade

Mobile Apps: Start with Kivy basics — Build a simple app — Explore advanced features
Data & Analytics: Start with Pandas - Matplotlib - Scikit-learn

AI/ML: Start with NumPy - Pandas - Scikit-learn - TensorFlow/PyTorch

Web Development: Start with Flask — Build a simple site — Django (for larger projects)
Automation: Start with Requests — Beautiful Soup - Selenium

Images/Media: Start with Pillow - OpenCV (for advanced projects)

Tips for Success

1. Practice regularly - Even 15 minutes a day helps!

2. Type the code yourself - Don't just copy and paste

3. Experiment - Try changing things to see what happens

4. Make mistakes - Errors are how you learn

5. Build small projects - Apply what you learn to real problems

6. Be patient - Programming takes time to learn

Happy Coding! .

No. 26 / 26

https://discordpy.readthedocs.io/
https://python-telegram-bot.org/
af://n3062
af://n2402

	Beginner's Python Workshop with Thonny
	Introduction: Setting Up Your Environment
	What is Thonny?
	Installing Thonny
	Understanding the Thonny Interface
	Your First Program

	1. Course Content
	Getting Started with Thonny
	Chapter 1: Your First Python Program
	Printing Text

	Chapter 2: Variables and Numbers
	Storing Values
	Basic Math
	Combining Text and Variables

	Chapter 3: Getting Input from Users
	The input() Function
	Working with Number Input

	Chapter 4: Making Decisions with if Statements
	Basic if Statement
	if-else Statements
	if-elif-else for Multiple Conditions

	Chapter 5: Repeating Actions with Loops
	The while Loop
	The for Loop

	Chapter 6: Lists - Storing Multiple Values
	Creating Lists
	Accessing List Items
	Adding to Lists
	Looping Through Lists

	Chapter 7: Functions - Reusable Code
	Creating Simple Functions
	Functions with Parameters
	Functions that Return Values

	2. Demos
	Demo 1: Installing and Using External Packages from PyPI
	Installing a Package
	Using the Installed Package
	Other Useful Packages from PyPI

	Demo 2: FractPy
	Install the package
	Copy the code
	Click Run to see the preview
	Try modifying

	Demo 3: OpenCV Face Detection
	Install the package
	Copy and past the code
	Press run and preview
	Modify it

	3. Take Home Exercises
	Exercise 1: Personal Greeting Program
	Exercise 2: Simple Calculator
	Exercise 3: Temperature Checker
	Exercise 4: Countdown Timer
	Exercise 5: Shopping List
	Exercise 6: Age Calculator Function

	4. Useful References
	Python Basics
	Quick Reference Code Snippets
	Printing
	Variables
	User Input
	If Statements
	Loops
	Lists
	Functions
	Common Operators

	Learning Resources
	Learning Resources
	Getting Help
	Python Community
	Python Project Ideas and Libraries
	Game Development
	Mobile & Desktop Apps
	Data Science & Visualization
	Machine Learning & AI
	Web Development
	Web Scraping & Automation
	File & Document Processing
	Hardware & Electronics
	Fun & Creative Projects

	Project Path Suggestions

	Tips for Success

